Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Two isomorphous benzenesulfonamide crystal structures determined by intermolecular C—H···O, C— H··· π and C—H···Cl interactions

Jan W. Bats,* Tanja M. Frost and A. Stephen K. Hashmi

Institut für Organische Chemie, Universität Frankfurt, Marie-Curie-Straße 11, D-60439 Frankfurt am Main, Germany Correspondence e-mail: bats@chemie.uni-frankfurt.de

Received 11 May 2001 Accepted 6 June 2001

The title compounds, *N*-[5-(4-chlorophenyl)furan-2-ylmethyl]-4-methyl-*N*-(prop-2-ynyl)benzenesulfonamide, (I*a*), and *N*-[5-(2-chlorophenyl)furan-2-ylmethyl]-4-methyl-*N*-(prop-2-ynyl)benzenesulfonamide, (I*b*), both C₂₁H₁₈ClNO₃S, have isomorphous crystal structures. The crystal packing is mainly determined by intermolecular C-H···O and C-H··· π interactions. These interactions are very similar in (I*a*) and (I*b*). Additional intermolecular C-H···Cl interactions appear less important and are different in (I*a*) and (I*b*). The different positions of the Cl atoms result in small variations of the crystal packing of the two compounds.

Comment

The title compounds, (Ia) and (Ib), were prepared as test substrates for the gold-catalysed conversion of furans bearing terminal alkyne groups to highly substituted biaryl compounds (for background material, see Hashmi *et al.*, 2000).

Compounds (I*a*) and (I*b*) have isomorphous crystal structures, despite the different positions of the Cl substituents. The conformations of molecules (I*a*) and (I*b*) are very similar; differences of about 2° are found for the torsion angles about the N-C11 and C6-C7 bonds, while a difference of about 5° is found for the torsion angle about the C10-C11 bond. There is a short intramolecular contact distance of 2.65 Å between Cl and H8 in (I*b*). This distance is considerably shorter than the H···Cl distances of about 2.85 to 3.15 Å generally observed for intermolecular C-H···Cl contacts. The widening of the

Figure 1

The molecule of (a) (Ia) and (b) (Ib). Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as small circles of arbitrary radii.

Figure 2

Molecules of (I*a*) connected in the *a* direction (horizontal direction in figure) into chains by $C-H\cdots O$ and $C-H\cdots \pi$ interactions. Similar chains occur in (I*b*).

Figure 3

Molecules of (I*a*) connected in the *b* direction (vertical direction in figure) by $C-H\cdots\pi$, $C-H\cdotsO$ and $C-H\cdotsCl$ interactions. Similar chains, but with different $C-H\cdots Cl$ interactions, occur in (I*b*).

C5-C6-C7 and C6-C7-C8 angles in (I*b*) by 5 and 3°, respectively, compared with the values in (I*a*) shows the H8···Cl contact to be probably repulsive. This repulsion is balanced by resonance between the π systems of the furan ring and the adjacent phenyl ring. Atom C6 deviates by 0.047 (3) Å from the furan plane in (I*b*) and by only 0.015 (3) Å in (I*a*). Nevertheless, the angle between the plane of the furan ring and the plane of the phenyl group attached to C7 is very similar in both compounds, *i.e.* 13.51 (7)° in (I*a*) and 13.91 (7)° in (I*b*).

The N atom is considerably non-planar; the sum of the three valence angles about N is 347.4 (1)° in (Ia) and 347.7 (1)° in (Ib). The S atom shows a significant displacement from the plane of the phenyl ring to which it is attached: 0.134 (5) Å in (Ia) and 0.110 (4) Å in (Ib). This out-of-plane deformation may result from intermolecular interactions.

The crystal packing of both compounds shows two distinct features, which are represented in Figs. 2 and 3, respectively. The ethynyl group is involved in a short $C-H \cdots O$ interaction with an H14···O2 distance of 2.41 Å in (Ia) and 2.38 Å in (Ib) (Tables 1 and 2), resulting in hydrogen-bonded chains of molecules parallel to the x axis (Fig. 2). The ethynyl group also acts as an acceptor of a weak $C-H\cdots\pi$ contact. The C1-H1... π_{ethynyl} contact points more closely to the terminal C14 atom than to the centre of the ethynyl group. Similar π interactions involving ethynyl groups have been summarized by Desiraju & Steiner (1999). The molecules are connected parallel to the y axis by various intermolecular interactions (Fig. 3), namely two C_{phenyl} -H··· π_{phenyl} interactions, viz. C16-H16···Cg2ⁱⁱⁱ and C20-H20···C5^v (Cg2 represents the centroid of the C1-C6 phenyl ring), a weak C-H···O interaction, viz. $C12-H12B\cdots O1^{iii}$, and $C-H\cdots Cl$ interactions. The latter are different in (Ia) and (Ib); $C17 - H17 \cdots Cl^{iii}$ and $C19-H19\cdots Cl^{v}$ interactions are observed in (Ia), whereas a $C20-H20\cdots Cl^{v}$ interaction is observed in (Ib) (see Tables 1 and 2 for symmetry codes).

Both compounds show a number of additional intermolecular C-H···Cl interactions. A C4-H4···Clⁱⁱ interaction is found in both compounds. Due to the different positions of the Cl atoms, however, the intermolecular $C4 \cdots Cl^{ii}$ vectors differ considerably in (Ia) and (Ib). Two further C-H···Cl interactions occur in (Ib), i.e. C19-H19···Cl^{vi} and C21-H21B···Cl^{vi}. Corresponding interactions are missing in (Ia). The isomorphism of (Ia) and (Ib) suggests that the crystal packing of (Ia) and (Ib) is determined by the intermolecular C–H···O and C–H·· π interactions, rather than by the intermolecular C-H···Cl interactions. The minor importance of the latter interactions is in agreement with the observation of Aullón et al. (1998) that the Cl-Cgroup is a very poor hydrogen-bond acceptor. The C-H···Clcontacts observed in (Ia) and (Ib) are rather long, with $H \cdots Cl$ distances between 2.97 and 3.13 Å. An inspection of 329 randomly selected chlorophenyl-containing structures from the Cambridge Structural Database (Allen & Kennard, 1993) shows that the majority of intermolecular C-H···Cl contacts have $H \cdots Cl$ distances around 3.0 Å. With a few exceptions, there are no intermolecular $C-H\cdots Cl$ contacts with $H\cdots Cl$ distances shorter than 2.8 Å. These contacts may be characterized as weak electrostatic interactions rather than weak hydrogen bonds. The different positions of the Cl atoms in (I*a*) and (I*b*) result in small variations of the crystal packing, leading to significant differences in the lattice constants of (I*a*) and (I*b*). The largest difference is observed for the β values.

Experimental

Synthesis of (Ia): 5-(4-chlorophenyl)furan-2-carbaldehyde (705 mg, 3.41 mmol), prop-2-ynylamine (188 mg, 3.41 mmol) and MgSO₄ (800 mg, 6.56 mmol) were stirred in dichloromethane. After 24 h, the solvent was removed in vacuo, the residue taken up in methanol and NaBH₄ (70.3 mg, 1.86 mmol) added. After 16 h, an aqueous work-up and column chromatography on silica gel (hexane/ethyl acetate, 3:1) provided 351 mg (42%) of [5-(4-chlorophenyl)furan-2-ylmethyl]prop-2-ynylamine. The latter amine (300 mg, 1.22 mmol), p-toluenesulfonyl chloride (233 mg, 1.22 mmol), triethylamine (234 mg, 1.22 mmol) and 4-(N,N-dimethylamino)pyridine (7.5 mg, 61.4 μ mol) in dichloromethane were stirred for 16 h. After aqueous work-up and column chromatography on silica gel (hexane/ethyl acetate/dichloromethane, 20:1:1), 176 mg (36%) of (Ia) was obtained as colourless crystals with a melting point of 415-417 K. Single crystals were obtained from a hexane/dichloromethane mixture at 277 K. Synthesis of (Ib): 5-(2-chlorophenyl)furan-2-carbaldehyde (1.00 g, 4.84 mmol), prop-2-ynylamine (265 mg, 4.84 mmol), MgSO₄ (1.00 g, 83.1 mmol) and NaBH₄ (91.6 mg, 2.42 mmol) were treated as

Table 1

Hydrogen-bonding geometry (Å, °) for (Ia).

Cg2 represents the centroid of the C1-C6 phenyl ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$C2-H2\cdots O3^{i}$	0.95	2.64	3.519 (2)	153
C4-H4···Cl ⁱⁱ	0.95	3.01	3.821 (2)	144
$C12-H12B\cdots O1^{iii}$	0.99	2.73	3.703 (2)	169
$C14 - H14 \cdots O2^{iv}$	0.95	2.41	3.227 (3)	144
C17-H17···Cl ⁱⁱⁱ	0.95	2.97	3.900 (2)	165
$C19-H19\cdots Cl^{v}$	0.95	3.05	3.977 (2)	166
$C21 - H21A \cdots O2^{iv}$	0.98	2.61	3.423 (2)	140
$C16-H16\cdots Cg2^{iii}$	0.95	2.60	3.457 (2)	150
$C20-H20\cdots C5^{v}$	0.95	2.86	3.733 (2)	154
$C1-H1\cdots C14^{vi}$	0.95	2.87	3.812 (2)	174

Symmetry codes: (i) 2 - x, 1 - y, 1 - z; (ii) 2 - x, 2 - y, -z; (iii) 1 - x, 1 - y, 1 - z; (iv) x - 1, y, z; (v) 1 - x, 2 - y, 1 - z; (vi) 1 + x, y, z.

Table 2

Hydrogen-bonding geometry (Å, $^{\circ}$) for (Ib).

Cg2 represents the centroid of the C1-C6 phenyl ring.

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C2 - H2 \cdot \cdot \cdot O3^{1}$	0.95	2.74	3.479 (2)	135
C4−H4···Cl ⁱⁱ	0.95	3.13	3.974 (2)	148
$C12-H12B\cdots O1^{iii}$	0.99	2.71	3.679 (2)	165
$C14-H14\cdots O2^{iv}$	0.95	2.38	3.242 (2)	150
$C20-H20\cdots Cl^{v}$	0.95	3.07	3.949 (2)	154
C19−H19· · ·Cl ^{vi}	0.95	3.05	3.865 (2)	145
$C21 - H21A \cdots O2^{iv}$	0.98	2.80	3.620(2)	142
$C21 - H21B \cdot \cdot \cdot Cl^{vi}$	0.98	3.08	4.016 (2)	159
$C16-H16\cdots Cg2^{iii}$	0.95	2.66	3.484 (2)	145
$C20-H20\cdots C5^{v}$	0.95	2.90	3.777 (2)	154
$C1-H1\cdots C14^{vii}$	0.95	2.78	3.694 (2)	162

Symmetry codes: (i) 2 - x, 1 - y, 1 - z; (ii) 2 - x, 2 - y, -z; (iii) 1 - x, 1 - y, 1 - z; (iv) x - 1, y, z; (v) 1 - x, 2 - y, 1 - z; (vi) x - 1, y, 1 + z; (vii) 1 + x, y, z.

described above for (I*a*). Column chromatography on silica gel (hexane/ethyl acetate/dichloromethane, 5:1:1) provided [5-(2-chlorophenyl)furan-2-ylmethyl]prop-2-ynylamine (572 mg, 48%). From the latter amine (572 mg, 2.33 mmol), *p*-toluenesulfonyl chloride (533 mg, 2.80 mmol), triethylamine (290 mg, 2.87 mmol) and 4-(*N*,*N*-dimethylamino)pyridine (14.2 mg, 283 mmol) by the method described for (I*a*) after column chromatography (hexane/ethyl acetate/dichloromethane, 20:1:1), 531 mg (57%) of (I*b*) were obtained as colourless crystals with a melting point of 404–405 K. Single crystals were obtained from a hexane/dichloromethane mixture at 277 K.

Compound (Ia)

Crystal data

 $\begin{array}{l} C_{21}H_{18}\text{CINO}_3\text{S} \\ M_r = 399.87 \\ \text{Triclinic, } P\overline{1} \\ a = 7.5309 \ (16) \ \mathring{A} \\ b = 9.5789 \ (14) \ \mathring{A} \\ c = 13.893 \ (2) \ \mathring{A} \\ \alpha = 80.234 \ (9)^\circ \\ \beta = 82.252 \ (14)^\circ \\ \gamma = 73.959 \ (10)^\circ \\ V = 945.1 \ (3) \ \mathring{A}^3 \end{array}$

Data collection

Siemens SMART CCD diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2000) $T_{min} = 0.923, T_{max} = 0.974$ 19065 measured reflections 5805 independent reflections 4256 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.107$ S = 1.035805 reflections 246 parameters H atom parameters constrained

Compound (Ib)

Crystal data

 $\begin{array}{l} C_{21}H_{18}\text{CINO}_{3}\text{S} \\ M_r = 399.87 \\ \text{Triclinic, } P\overline{1} \\ a = 7.6526 \ (13) \text{ Å} \\ b = 9.679 \ (2) \text{ Å} \\ c = 13.6308 \ (19) \text{ Å} \\ a = 79.910 \ (13)^\circ \\ \beta = 75.152 \ (13)^\circ \\ \gamma = 74.435 \ (12)^\circ \\ V = 934.0 \ (3) \text{ Å}^3 \end{array}$

Z = 2 $D_x = 1.405 \text{ Mg m}^{-3}$ Mo K\$\alpha\$ radiation Cell parameters from 139 reflections $\theta = 3-23^{\circ}$ $\mu = 0.33 \text{ mm}^{-1}$ T = 140 (2) KPlate, colourless $0.50 \times 0.24 \times 0.08 \text{ mm}$

 $\begin{aligned} R_{\text{int}} &= 0.037\\ \theta_{\text{max}} &= 30.9^{\circ}\\ h &= -10 \rightarrow 10\\ k &= -13 \rightarrow 13\\ l &= -20 \rightarrow 20\\ 234 \text{ standard reflections}\\ \text{frequency: } 600 \text{ min}\\ \text{intensity decay: none} \end{aligned}$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.04P)^{2} + 0.50P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.51 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.40 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL97* Extinction coefficient: 0.0049 (13)

Z = 2
$D_x = 1.422 \text{ Mg m}^{-3}$
Mo $K\alpha$ radiation
Cell parameters from 160
reflections
$\theta = 3-23^{\circ}$
$\mu = 0.34 \text{ mm}^{-1}$
T = 140 (2) K
Plate, colourless
$0.50 \times 0.16 \times 0.12 \text{ mm}$

Data collection

```
Siemens SMART CCD diffractoreR_{in}tometer\theta_{ma}\omega scansh =Absorption correction: multi-scank =(SADABS; Sheldrick, 2000)l =T_{min} = 0.921, T_{max} = 0.96027619 124 measured reflectionsf6133 independent reflectionsi4738 reflections with I > 2\sigma(I)Parine and the second secon
```

Refinement

```
Refinement on F^2

R[F^2 > 2\sigma(F^2)] = 0.041

wR(F^2) = 0.094

S = 1.04

6133 reflections

246 parameters

H atom parameters constrained
```

 $\begin{aligned} R_{\rm int} &= 0.029 \\ \theta_{\rm max} &= 31.5^{\circ} \\ h &= -11 \rightarrow 10 \\ k &= -14 \rightarrow 13 \\ l &= -18 \rightarrow 20 \\ 276 \text{ standard reflections} \\ \text{frequency: 600 min} \\ \text{intensity decay: none} \end{aligned}$

$$\begin{split} &w = 1/[\sigma^2(F_o^{\ 2}) + (0.03P)^2 \\ &+ 0.52P] \\ &\text{where } P = (F_o^{\ 2} + 2F_c^{\ 2})/3 \\ (\Delta/\sigma)_{\max} = 0.001 \\ \Delta\rho_{\max} = 0.36 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\min} = -0.47 \text{ e } \text{\AA}^{-3} \\ &\text{Extinction correction: SHELXL97} \\ &\text{Extinction coefficient: 0.0045 (12)} \end{split}$$

The H atoms were taken from a difference Fourier synthesis. They were refined with fixed individual displacement parameters $[U(H) = 1.2U_{eq}(C) \text{ and } U(H) = 1.5U_{eq}(C_{methyl})]$ using a riding model with fixed C-H distances of 0.98 Å for methyl, 0.99 Å for secondary, and 0.95 Å for phenyl and alkyne H atoms. The torsion angles about the C-C bond of the methyl groups were refined.

For both compounds, data collection: *SMART* (Siemens, 1995); cell refinement: *SMART*; data reduction: *SAINT* (Siemens, 1995); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 1996); software used to prepare material for publication: *CIF* in *SHELXL*97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1466). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
- Aullón, G., Bellamy, D., Brammer, L., Burton, E. A. & Orpen, A. G. (1998). *Chem. Commun.* pp. 653–654.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press.
- Hashmi, A. S. K., Frost, T. M. & Bats, J. W. (2000). J. Am. Chem. Soc. 122, 11553–11554.
- Sheldrick, G. M. (1996). *SHELXTL*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.
- Siemens (1995). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.